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Abstract
The irreversible growth of a magnetic film with spins having two possible
orientations is studied in three-dimensional confined geometries of size
L × L × M , where M � L is the growing direction. A competing situation
with two opposite short-range surface magnetic fields H of the same magnitude
is analysed. Due to the antisymmetric condition considered, an interface
between domains with spins having opposite orientations develops along the
growing direction. Such an interface undergoes a localization–delocalization
transition that is the precursor of a wetting transition in the thermodynamic limit,
in qualitative agreement with observations made under equilibrium conditions.
However, in contrast to its equilibrium counterparts, the film also exhibits a
growing interface that undergoes a concave–convex transition in the growth
mode. The phase diagram on the H versus T plane is first obtained for a finite
system, and exhibits eight different regions. Subsequently, the phase diagram
corresponding to the thermodynamic limit is obtained by extrapolation. It is
shown that in the latter only six regions remain. The relevant physical properties
of all of these regions are discussed in detail.

1. Introduction

The interaction of a saturated gas in contact with a wall or a substrate may result in the
occurrence of very interesting wetting phenomena, where a macroscopically thick liquid layer
condenses at the wall, while the bulk fluid may remain in the gaseous phase [1–5]. The
wetting of solid surfaces by a fluid is a phenomenon of primary importance in many fields of
practical technological applications (lubrication, efficiency of detergents, oil recovery in porous
material, stability of paint coatings, interaction of macromolecules with interfaces, etc [1]).
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Surface enrichment and wetting layers have been observed experimentally in a great variety
of systems, such as polymer mixtures [6–8] and adsorption of simple gases on alkali metal
surfaces [9–11], with the recent addition of Hg to the adsorption species exhibiting this kind
of transition phenomenon [12, 13], and also hydrocarbons on mica [14], etc.

The study of wetting transitions at interfaces has also attracted considerable theoretical
interest [3–5], involving, among others, different approaches such as the mean-field Ginzburg–
Landau method [15, 16], transfer matrix and Pfaffian techniques [17, 18], density matrix
renormalization group methods [19], solving the Cahn–Hilliard equation [20], using molecular
dynamics simulations [21], solving self-consistent field equations [22], and by means of
extensive Monte Carlo simulations [23–27].

So far, the considerable progress due to all these studies of wetting transitions has
been achieved for systems under equilibrium conditions. In contrast, the study of wetting
phenomena under non-equilibrium conditions has received much less attention. For instance,
Hinrichsen et al [28] have recently introduced a non-equilibrium growth model of a one-
dimensional interface interacting with a substrate. The interface evolves via adsorption–
desorption processes, which depart from detailed balance. Then, on changing the relative rates
of these processes a transition from a binding to a nonbinding phase has been reported [28].

Within this context, the aim of this work is to perform an extensive numerical study of the
irreversible growth of a magnetic material confined between parallel walls where competing
surface magnetic fields act. For this purpose, a variant of the irreversible Eden growth
model [29], in which particles are replaced by spins that can adopt two different orientations,
is investigated. It is shown that the interplay between confinement and growth mode leads
to a physically rich phase diagram. It should also be remarked that, although the discussion
is presented here in terms of a magnetic language, the relevant physical concepts can rather
straightforwardly be extended to other systems such as fluids, polymers, and binary mixtures.
Apart from the fundamental interest in understanding this complex physical situation, it may
well play a key role in the development of technologies such as micromagnetic materials, micro-
fluidics, self-assembly of three-dimensional structures, adhesives, lubricants, and coatings.
Indeed, wetting phenomena under far-from-equilibrium conditions are expected to be of wide
application to describe a great variety of processes actually encountered in practice.

Furthermore, the proposed study establishes a link with recent investigations of irreversible
growth processes. In fact, the study of growth systems under far-from-equilibrium conditions
is a subject that has attracted great attention during the last few decades. Nowadays, this
interdisciplinary field has shown a rapid progress due to both its interest in many subfields
of physics, chemistry, and biology, and its relevance in numerous technological applications.
Recent progress in our understanding of growth phenomena, with special emphasis on the
properties of rough interfaces, has been extensively reviewed [30–34].

Also, the study of wetting phenomena in far-from-equilibrium systems under confinement
has an extra ingredient of theoretical interest due to the delicate interplay between surface and
bulk properties. Indeed, from the experience gained studying equilibrium systems, it is well
known that, using confined geometries with restricted dimensionality, the effects of statistical
fluctuations are more pronounced [23–27,35–41], leading to a new and rich physical behaviour,
which eventually may be the precursor of the actual critical behaviour only observed in the
thermodynamic limit. Within this context, in the present work it is shown that in far-from-
equilibrium systems, the subtle interplay between finite-size effects, wetting, and interface
growth mechanisms leads to more rich and complex physical features than in the equilibrium
counterpart. In fact, a complex phase diagram that exhibits a localization–delocalization
transition in the interface that runs along the walls and a change of the curvature of the growing
interface running perpendicularly to the walls is evaluated and discussed, first for finite-size
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systems, and subsequently for the extrapolated infinite system.
This paper is organized as follows: in section 2 we give details on the simulation method,

section 3 is devoted to the presentation and discussion of the results, while the conclusions are
finally stated in section 4.

2. The model and the simulation method

In the classical Eden model [29] on the square lattice, the growth process starts by adding
particles to the immediate neighbourhood (the perimeter) of a seed particle. Subsequently,
particles are stuck at random to perimeter sites. This growth process leads to the formation of
compact clusters with a self-affine interface [31–34]. The magnetic Eden model (MEM) [42]
considers an additional degree of freedom due to the spin of the growing particles. Early studies
of the MEM have been performed using a single seed placed at the centre of the sample [42], but
some subsequent investigations [43–46] have adopted instead (d + 1)-dimensional rectangular
geometries. Following the latter approach, in the present work the MEM in (2 + 1) dimensions
is studied using a rectangular geometry, L × L × M (with M � L). Figure 1 illustrates
the general set-up assumed. The location of each site on the lattice is specified through its
rectangular coordinates (i, j, k) (1 � i, j � L, 1 � k � M). The starting seed for the growing
cluster is a plane of L × L parallel-oriented spins placed at k = 1, and cluster growth takes
place along the positive longitudinal direction (i.e., k � 2). Periodic boundary conditions are
chosen along one of the transverse directions (say in the i-direction), while open boundary
conditions are adopted along the remaining transverse direction. Competing surface magnetic
fields H > 0 (H ′ = −H ) acting on the sites placed at j = 1 (j = L) are considered.
Then, assuming that each spin Sijk may adopt two possible orientations, namely up and down
(i.e. Sijk = ±1), clusters are grown by selectively adding spins to perimeter sites, which are
defined as the nearest-neighbour (NN) empty sites of the already occupied ones. Considering
a ferromagnetic interaction of strength J > 0 between NN spins, the energy E of a given
configuration of spins is given by

E = −J

2

( ∑
〈ijk,i ′j ′k′〉

SijkSi ′j ′k′

)
− H

( ∑
〈ik,�1〉

Si1k −
∑

〈ik,�L〉
SiLk

)
, (1)

where 〈ijk, i ′j ′k′〉 means that the summation in the first term is taken over all occupied NN
sites, while 〈ik, �1〉, 〈ik, �L〉 denote summations carried over occupied sites on the surfaces
�1, �L (defined as the j = 1 and L planes, respectively). Thus, setting the Boltzmann constant
equal to unity (kB ≡ 1) and measuring absolute temperature, energy, and magnetic fields in
units of J , the change of energy �E involved in the addition of a spin Sijk to the system is
given by

�E = −Sijk

( ∑
〈ijk,i ′j ′k′〉

Si ′j ′k′ + H(δj1 − δjL)

)
, (2)

where the summation 〈ijk, i ′j ′k′〉 is taken over occupied NN sites keeping i, j, k fixed, and
δj1, δjL are standard Kronecker delta symbols. Therefore, the probability for a perimeter site
to be occupied by a spin Sijk is proportional to the Boltzmann factor exp(−�E/T ), where �E

is given by equation (2). At each step, the probabilities of adding up and down spins to a given
site have to be evaluated for all perimeter sites. After proper normalization of the probabilities,
the growing site and the orientation of the spin are determined through standard Monte Carlo
techniques. Although both the interaction energy and the Boltzmann probability distribution
considered for the MEM are similar to those used for the Ising model with surface magnetic
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Figure 1. The general set-up for the MEM in a (2 + 1)-dimensional rectangular geometry. The
system grows along the positive longitudinal direction from a seed constituted by L × L parallel-
oriented spins placed at k = 1, as indicated. Competing surface magnetic fields are applied on the
surfaces j = 1 and L, while periodic boundary conditions are assumed along the i-direction. The
slices shown in figure 4, obtained for different temperatures and magnetic fields, illustrate typical
growth regimes.

fields [23], it must be stressed that these two models operate under extremely different condi-
tions, namely the MEM describes the irreversible growth of a magnetic material and the Ising
model is suitable for the study of a magnetic system under equilibrium conditions. In the
MEM, the position and orientation of all deposited spins remain fixed. The non-equilibrium
nature of the MEM is clear from the fact that the extensive thermodynamic variables (such as
energy, entropy, and volume) grow monotonically with time and tend to diverge. Furthermore,
during the growth process, the system develops a rough growth interface and evolves mainly
along the longitudinal direction k (see figure 1). However, some lattice sites could remain
empty even well within the system’s bulk. Since at each growth step all perimeter sites are
potential candidates for being occupied by the next spin to be added, these holes become
gradually filled. It may appear that the k-coordinate is something like the ‘time’ in a kinetic
Ising model. However, this is not strictly true because already deposited spins at position k

effectively affect spin growth at position k′ < k, and this would mean causality violation.
Far behind the active growth interface, the system is compact and frozen. When the

growing cluster interface is close to reaching the limit of the sample (k = M) one can compute
the relevant properties of the irreversibly frozen cluster’s bulk (in the region where the growing
process has definitively stopped), thereafter erase the useless frozen bulk, and finally shift the
growing interface towards the lowest possible coordinate k. Hence, repeatedly applying this
procedure, the growth process is not limited by the lattice length M .

It should be noticed that this paper involves a large computational effort. On the one
hand, as will be seen below, the observables of interest (e.g. the susceptibility) are averaged
over many transverse planes of size L × L. In order to obtain acceptably small statistical
errors, averages over ∼105−6 planes in the stationary regime are typically required. So, in
the present work clusters having up to ∼109 spins have been grown. On the other hand, the
update algorithm is quite slow as compared with standard Ising simulations, since the growing
probability has to be computed after each deposition event.

3. Results and discussion

Recent investigations [44] have shown that the magnetic Eden growth process in a stripped
(d +1)-dimensional geometry (with d = 1, 2) is characterized by an initial transient of average
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length lT r , followed by a non-equilibrium stationary state that is independent of the starting
seed. It has also been shown that the MEM in d = 1 dimension is non-critical (i.e., it only
exhibits an ordered phase at T = 0), while the MEM in d = 2 dimensions undergoes an order–
disorder thermal transition of second order at the temperature Tc = 0.69±0.01. Moreover, the
critical exponents associated with the continuous phase transition have been found to agree,
within error bars, with those of the Ising model in two dimensions. Hence, the reported findings
have led to the conjecture that the (d+1)-dimensional MEM and the d-dimensional Ising model
behave identically (except as regards finite-size differences that vanish in the thermodynamic
limit) at criticality for all d [44].

At this stage it is appropriate to briefly recall that a confined Ising film with competing
surface fields undergoes an equilibrium wetting transition. Indeed, when an Ising film
is confined between two competing walls a distance L apart from each other, so that
the surface magnetic fields (H ) are of the same magnitude but opposite direction, it is
found that the competing fields cause the emergence of an interface that undergoes a
localization–delocalization transition. This transition shows up at an L-dependent temperature
Tw(L, H) that is the precursor of the true wetting transition temperature Tw(H) of the infinite
system [16, 23, 24].

In view of the non-trivial correspondence established between the (d + 1)-dimensional
MEM and the d-dimensional Ising model, we should also expect an Ising-like wetting transition
for the MEM. In fact, on applying surface magnetic fields of opposite signs to the MEM, we
should expect to obtain a well defined phase transition curve between wet and non-wet states on
the H–T plane. In order to deal with a phase transition that will remain in the thermodynamic
limit (L → ∞), one should devote attention to the (d + 1)-dimensional MEM with d � 2
since, as already pointed out, the MEM is non-critical for d = 1. For this purpose, we have
studied the (2 + 1)-dimensional MEM with magnetic fields H and H ′ = −H applied to the
surfaces �1 and �L, respectively (recall section 2). As in previous investigations [44], the
mean transverse magnetization is defined as

m(k, L, T , H) = 1

L2

L∑
i,j=1

Sijk (3)

for k > lT r , in order to exclude the initial transient. Furthermore, it is assumed that the finite-
size (L-dependent) susceptibility can be defined in terms of order parameter fluctuations in the
same manner as for equilibrium systems, namely

χ = L2

T
(〈m2〉 − 〈|m|〉2), (4)

where 〈· · ·〉 means the average taken over a sufficiently large number of transverse planes in
the stationary regime. Then, using a standard procedure [23], the localization–delocalization
transition curve (on the H–T plane) corresponding to the up–down interface running along
the walls can be obtained considering that a point with coordinates (Hw, Tw) on this curve
maximizes χ(H, T ). Figure 2 shows plots of χ versus T for several values of H and the
fixed lattice size L = 12, illustrating the method used to trace the size-dependent localization–
delocalization transition curve, which is shown in figure 3 (open squares). As in the case of
the Ising model, this quasi-wetting transition refers to a transition between a non-wet state that
corresponds to a localized interface bound to one of the confinement walls, and a wet state
associated with a delocalized domain interface centred between roughly equal domains of up
and down spins. The localization–delocalization transition in a confined system is indeed the
precursor of the true wetting transition that occurs in the thermodynamic limit [16,23,24]. In
fact, there is observed a finite jump in the wetting layer thickness that takes place as a result of
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Figure 2. Plots of χ versus T for a fixed lattice size L = 12 and several values of H , as indicated. If
Tw is the temperature that corresponds to the maximum of χ for a given fixed value of H = Hw , then
(Hw, Tw) is a point on the wet–non-wet transition curve, as follows from standard procedures [23].
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Figure 3. The H–T phase diagram corresponding to a lattice of size L = 12. The vertical straight
line at Tc(L) = 0.84 corresponds to the L-dependent critical temperature, which separates the
low-temperature ordered phase from the high-temperature disordered phase. Open (filled) circles
refer to the transition between non-defined and concave (convex) growth regimes, and squares
stand for the Ising-like localization–delocalization transition curve. Eight different regions are
distinguished, as indicated in the figure. Also indicated are seven representative points that are
discussed in the text. The inset shows the phase diagram corresponding to the thermodynamic
limit composed of six different regions.

the finite size of the system. As the lattice size is increased, the magnitude of the jump grows
and diverges in the L → ∞ limit, as expected for a continuous wetting transition.

Let us now discuss the critical temperature associated with the bulk order–disorder phase
transition. As is well known from finite-size scaling theory, there is some degree of arbitrariness
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in locating the L-dependent critical temperature Tc(L) of a finite system. However, the critical
point Tc of the infinite system, obtained by extrapolating Tc(L) to the L → ∞ limit, is
unique and independent of any particular choice for the finite-size critical point. Let us first
consider the case with H = 0, defining the L-dependent critical temperature as given by the
peak of the susceptibility at zero surface field, to ensure consistency with the evaluation of
the localization–delocalization quasi-wetting transition. Indeed, under this assumption, the
quasi-wetting curve Tw(L, H) and the critical point Tc(L) coincide by definition at H = 0.
For L = 12, the critical point so defined is Tc(L = 12) = 0.84, and is shown in figure 2
by a vertical straight line. Using larger and larger lattices, correspondingly smaller finite-size
critical points are found, which tend to the actual critical point of the (2+1)-dimensional MEM,
namely Tc = 0.69 ± 0.01 [44]. Before exploring the case H > 0, it is appropriate to recall a
long-standing discussion on this topic generated in the field of equilibrium critical phenomena.
Parry and Evans [15, 47] claim that the critical temperature for a finite system depends on the
surface magnetic fields, and only differs from the wetting temperature of the infinite system
(Tw(H)) by a term that vanishes in the thermodynamic limit. Indeed, they suggest a scaling
ansatz such that Tw(H)−Tc(L, H) is of order L−1/βs , where βs is the exponent that describes
the growth of the wetting layer. However, Swift et al [16] and Indekeu et al [48] propose that
Tc(L, H) is actually the temperature of a shifted wetting transition (hence called the quasi-
wetting transition temperature Tw(L, H)), which is different from the bulk critical point Tc(L),
and such that Tw(L, H) tends for L → ∞ to the actual wetting temperature Tw(H). In the
case of the MEM, general considerations, supported by our numerical results, appear to favour
the latter proposal, so the bulk critical point is independent of H and hence clearly different
from the quasi-wetting temperature. However, it should be remarked that the controversy has
been established for systems under equilibrium and the present study of the MEM corresponds
to far-from-equilibrium conditions.

Let us first consider an increase in the surface fields from H = 0 for a system within
the ordered phase (i.e., for T < Tc(L)). Since fluctuations in the bulk are governed only by
the temperature, it clearly turns out that the bulk will remain in its ordered state irrespective
of the applied field. Indeed, as will be discussed below in detail, an increase in the fields
favours the formation of a stable longitudinal interface between domains of up and down spins.
However, within each domain, it is clear that the state of order will depend only in fluctuations
driven by the temperature. Hence, surface fields applied to an ordered system below Tc(L)

will eventually favour the coexistence of oppositely oriented ordered domains, but are not
capable of generating disorder within each domain. These arguments are strongly supported
by our simulations. For instance, figures 4(a)–(c) show typical snapshot configurations that
correspond to nearly the same temperature (below Tc(L = 32) = 0.76) and several different
magnetic fields. As expected from our considerations, the fields appear to support the formation
of the longitudinal interface between opposite spin domains, but do not affect the bulk ordered
state within each domain. In particular, it should be noticed that figure 4(c) corresponds to
a field well above the corresponding one on the quasi-wetting curve (note that the snapshots
correspond to L = 32, and the associated transition curves are shifted to the left with respect to
those for L = 12, shown in the phase diagram of figure 3). If Tw(L, H) were to be the system’s
critical point, we should expect a system beyond the quasi-wetting curve to be disordered, in
remarkable contrast to the ordered configuration shown by figure 4(c). Moreover, as a check of
consistency, one can compare the configurations shown in figures 4(c) and (e), that correspond
to nearly the same fields and differ in temperature. It is thus evident that the bulk’s order–
disorder phase transition occurs at a temperature far away from the quasi-wetting transition
curve, and consistent with Tc(L = 32) = 0.76.

Further insights into the role of H acting within the bulk ordered phase T < Tc(L) can
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Figure 4. Snapshot pictures showing a longitudinal slice given by a fixed value of the transverse
coordinate i. Grey (black) points correspond to up (down) spins. The surface field on the upper
(lower) confinement wall is positive (negative). The snapshots correspond to a lattice size L = 32
and several different values of temperature and surface fields: (a) H = 0.05, T = 0.6; (b) H = 0.5,
T = 0.55; (c) H = 1.4, T = 0.6; (d) H = 0.1, T = 1.0; (e) H = 1.6, T = 1.4; and (f ) H = 0.20,
T = 0.82.

be gained by means of the following procedure. Let us focus our attention on the stationary
regime considering all completely filled columns directed along the j -direction, which are
formed by L spins and are identified through the values of the remaining coordinates i and k.
For any given column (i, k), a bond to each pair of NN sites occupied by oppositely oriented
spins is assigned. Summing over the whole column, nb(i, k) is defined as the total number of
bonds for that column, so nb = 0 for parallel-oriented spins and nb = L − 1 for alternating
up–down NN spins. Since all columns are statistically independent, the system is allowed to
grow for a sufficiently long time and averages are taken over all filled columns. In this way, the
normalized bond probability distribution P(nb) can be computed as a function of temperature,
surface magnetic fields, and lattice size. For the purposes of the present discussion, it suffices
to fix L = 12 and consider the effects of increasing the fields for a given value of temperature
below Tc(L = 12) = 0.84. Figure 5 shows the bond probability distribution P(nb) versus nb

for T = 0.6 and several values of H . It is observed that P(nb) ≈ 0 for nb � 2, irrespective of
the field. Hence, it is concluded that the system remains in its ordered state independently of
H , and that the role of the magnetic field is that of driving the system from a state constituted
by a single domain (P(nb = 0) ≈ 1) to a state formed by two oppositely oriented ordered
domains (P(nb = 1) ≈ 1). Figure 6 shows the mean number of bonds per column 〈nb〉 as a
function of H , for three different temperatures. As expected, in all cases the field drives the
crossover from a single ordered domain to two opposite ordered domains.

So, our discussion concerning the location of the critical temperature associated with the
bulk order–disorder phase transition can be summarized by stating that we find compelling
evidence for interpreting Tw(L, H) as a quasi-wetting transition temperature, clearly different
from the finite-size critical temperature Tc(L). Furthermore, our results are consistent with
the assumption of a field-independent critical point Tc(L), since the magnetic field appears to
play no role in the state of order within each magnetic domain.

Since the MEM is a non-equilibrium kinetic growth model, it also allows the identification
of another kind of phase transition, namely a morphological transition associated with the
curvature of the growing interface of the system [43]. To avoid confusion, we remark that the
term growing interface is used here for the transverse interface between occupied and empty
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Figure 5. Plots of the normalized bond probability distribution P(nb) versus nb for L = 12,
T = 0.6, and several values of H , as indicated. P(nb) is negligible for nb > 3, and thus it is not
shown in the figure. The role of the magnetic field appears to be that of driving the system from a
state constituted by a single domain (P(nb = 0) ≈ 1) to a state formed by two oppositely oriented
ordered domains (P(nb = 1) ≈ 1).
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Figure 6. Plots of 〈nb〉 versus H for a fixed lattice size L = 12 and several values of T , as indicated.
As expected, in all cases the field drives the crossover from a single ordered domain to two opposite
ordered domains.

lattice sites, while it was used above for the longitudinal interface between up- and down-spin
domains.

Firstly, let us consider a longitudinal slice with a fixed value of i in the range 1 � i � L.
In order to define the location of the growing interface at time t , it is assumed that each row
contributes to the growing interface with the outermost perimeter site (i.e., the site with the
largest value of the longitudinal coordinate k, for a given row number j ) and that number is
called Ij (t). Then, the growing interface centre of mass, that is taken as the location of the
growing interface at time t , I (t), is given by

I (t) = 1

L

L∑
j=1

Ij (t). (5)

Subsequently, one can evaluate the coordinates of the growing interface relative to its centre-
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of-mass location at time t , namely IRj (t) ≡ Ij (t) − I (t), for j = 1, 2, . . . , L. In this way,
it is possible to describe the growing interface at any time t during the growing process just
by evaluating the set {IRj (t)}. However, one should be cautious at this point. In fact, since
the applied surface fields are of equal intensity but have opposite direction, it turns out that the
probability of occurrence of a given growing interface {IRj } must equal that corresponding to
{IRj ′ }, where j ′ = L+1−j . But then, unless the growth profile happens to be symmetric (i.e.,
invariant under j → L+1−j , for all j ), the time average of equally probable growing interfaces
{IRj }, {IRj ′ } will lead to an unphysical symmetrized profile that is not representative of the
actual shape of the growing interface. To avoid this problem, the following procedure is used.
First, the largest value of the longitudinal coordinate k that corresponds to a completely filled
column is located. Then, by means of the sign of the total magnetization of that column, i.e.
S ≡ sgn(

∑
j Sijk), the orientation of the dominant spin domain in the active growing interface

is identified. Supposing that, following the recipe given above, a given profile {IRj (t)} is
obtained, then the growing interface location is redefined as {IRj∗(t)}, where j ∗ ≡ j if
S = +1 and j ∗ ≡ j ′ = L + 1 − j if S = −1, for all j . Notice that j ∗ = 1 (j ∗ = L)
corresponds to the side of dominant (non-dominant) spin domain, while j = 1 (j = L) is the
side of positive (negative) magnetic field.

Then, it is possible to evaluate the average relative growing interface 〈IRj∗ 〉 by taking
into account interface coordinates measured at different times between ti and tf , and also by
averaging all longitudinal i-fixed slices, i.e.

〈IRj∗ 〉 = 1

L

1

(tf − ti + 1)

L∑
i=1

tf∑
t=ti

IRi,j∗(t). (6)

Figure 7 shows 〈IRj∗ 〉 versus j ∗ for different values of the surface magnetic field H , for
a fixed temperature T = 0.6 and a fixed lattice size L = 32. From the figure it follows that
three qualitatively distinct growth regimes can clearly be distinguished. Indeed, it is observed
that, while for small fields the system grows with convex curvature, on increasing the fields
the growth process enters into a regime of non-defined curvature, since the dominant spin
domain partially wets the confinement wall, while the non-dominant domain does not. But
then, further increasing the fields, a point is reached where the non-dominant spin domain also
(partially) wets the wall and the growing interface turns concave. This qualitative behaviour
has been observed for all temperatures and lattice sizes within the range of interest of this
work.

To explore this phenomenon quantitatively, the behaviour of the contact angles between
the growing interface and the confinement walls (as functions of temperature and magnetic
field) has to be studied thoroughly. Clearly, two different contact angles must be defined,
namely θD for the angle corresponding to the dominant spin cluster, and θND for the one
that corresponds to the non-dominant spin cluster. Figure 8 shows plots of cot(θ) versus H

for T = 0.9 and L = 12. The vertical dashed lines indicate the fields that separate a given
growth regime from another one. One observes that, on increasing the surface fields, the growth
regime changes from convex to non-defined to concave, in agreement with the interface profiles
plotted in figure 7. Analogously, figures 9(a)–(d) show plots of cot(θ) versus T for L = 12 and
several different values for the magnetic field H . Again, vertical dashed lines correspond to
temperatures of transitions between different growth regimes. Figure 9(a) corresponds to H =
0.2 and displays the characteristic behaviour for very small magnetic fields—that is, a convex
growing interface irrespective of temperature. For H = 0.4 one observes a single transition
from the growth regime of non-defined curvature to the convex growth regime, which shows
up on increasing the temperature, as shown in figure 9(b). It should be noticed that the concave
growth regime is prevented, since for small enough magnetic fields cot(θND) < 0 for all T . As
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Figure 7. Plots of the averaged interface profile 〈IRj∗ 〉 versus j∗ for T = 0.6 and different values
of the surface magnetic field H , as indicated. The lattice width is L = 32. The plot corresponding
to H = 1.8 is shown separately in the inset, in order to allow a detailed observation of the profiles
for lower H -values. The side j∗ = 1 (j∗ = L) is the one corresponding to the dominant (non-
dominant) spin domain. On increasing the surface fields, the curvature of the growing interface
changes: convex → non-defined → concave. This qualitative behaviour has been observed for all
temperatures and lattice sizes within the range of interest of this work.
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Figure 8. Plots of cot(θ) versus H for T = 0.9 and L = 12. θD (θND) is the contact angle
corresponding to the dominant (non-dominant) spin cluster, and is represented by open (filled)
circles. The vertical dashed lines mark the fields that separate a given growth regime from another
one, as indicated. A reference line corresponding to cot(θ) = 0 has also been included.

the fields are increased, cot(θND) moves upwards and crosses cot(θND) = 0, as expected from
the plot of figure 8. For instance, the plots of cot(θ) versus T for H = 0.6, shown in figure 9(c),
exhibit this behaviour. Hence, here one has to deal with three transition temperatures. Finally,
on further increasing the fields, the whole low-temperature region is dominated by the concave
growth regime and two transition temperatures remain, as shown in figure 9(d) for H = 1.5. All
these features are compactly shown in the H–T phase diagram of figure 3, where open (filled)
circles refer to the transition between non-defined and concave (convex) growth regimes.
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Figure 9. Plots of cot(θ) versus T for L = 12 and several different magnetic fields: (a) H = 0.2,
(b) H = 0.4, (c) H = 0.6, and (d) H = 1.5. θD (θND) is the contact angle corresponding to
the dominant (non-dominant) spin cluster, and is represented by open (filled) circles. The vertical
dashed lines mark the temperatures that separate a given growth regime from another one, as
indicated. Reference lines corresponding to cot(θ) = 0 have also been included.

As shown in figure 3, the phase diagram of the MEM in a confined geometry with
competing surface fields is very rich and exhibits eight regions. In order to gain some
insight into the physics involved in this phase diagram, some typical snapshot configurations
characteristic of the various different growth regimes observed are shown in figure 4, as
obtained using lattices of size L = 32.

To begin with, let us analyse region I (see figure 3), that corresponds to the Ising-like
non-wet state and the convex growth regime. In this region, temperature is low and the system
grows in an ordered state, i.e. the dominant spin domain prevails and the deposited particles
tend to have their spins all pointing in the same direction. Small clusters with the opposite
orientation may appear preferably on the surface where the non-dominant orientation field
is applied. These ‘drops’ might grow and drive a magnetization reversal, thus changing the
sign of the dominant domain. In fact, the formations of sequences of well ordered domains
are characteristic of the ordered phase of confined (finite-size) spin systems. For instance,
this phenomenon has already been observed in finite Ising strips [23] and magnetic Eden thin
films [45]. Due to the fact that open boundary conditions are imposed at j = 1 and L, perimeter
sites at the confinement walls experience a missing-neighbour effect; that is, the number of
NN sites is lower than for the case of perimeter sites on the bulk. Since the surface magnetic
fields in this region are too weak to compensate for this effect, the system grows preferentially
along the centre of the sample as compared to the walls, and the resulting growth interface
exhibits a convex shape. A typical snapshot configuration characteristic of region I is shown
in figure 4(a).

Let us now consider an increase in the fields, such as the system may encounter in region
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II (see figure 3). Since the temperature is kept low, the system is still in its ordered phase and
neighbouring spins grow preferentially parallel oriented. The surface fields in this region are
stronger and thus capable of compensating for the missing NN sites on the surfaces. But, since
the fields on both surfaces have opposite signs, it is found that, on the one hand, the field that
has the same orientation as the dominant spin cluster favours the growth of surface spins, while
on the other hand, the sites on the surface with opposite field have a lower probability of being
chosen during the Monte Carlo growth process. Hence, the contact angle corresponding to
the dominant spin cluster is then θD < π

2 , while the non-dominant one is θND > π
2 . Thus, on

the disfavoured side the growing interface becomes pinned and the curvature of the growing
interface is not defined. Figure 4(b) shows a typical snapshot corresponding to region II.

Keeping H fixed within region II but increasing the temperature, thermal noise will enable
the formation of drops on the disfavoured side that eventually may nucleate into larger clusters
as the temperature is increased even further. This process may lead to the emergence of
an up–down interface, separating oppositely oriented domains, running in the longitudinal
direction (i.e. parallel to the walls). Since sites along the up–down interface are surrounded
by oppositely oriented NN spins, they have a low growing probability. So, in this case the
system grows preferably along the confinement walls and the growing interface is concave
(figure 4(c)). Then, as the temperature is increased, the system crosses to region A (see figure 3)
and the onset of two competitive growth regimes is observed, namely: (i) one exhibiting
a non-defined growing curvature that appears when a dominant spin orientation is present,
as in the case shown in figure 4(b); (ii) another that appears when an up–down interface is
established and the system has a concave growth interface, as is shown in figure 4(c). On further
increasing the temperature and for large enough fields, the formation of a stable longitudinal
up–down interface that pushes back the growing interface is observed. So, the system adopts
the concave growth regime (see figure 4(c) corresponding to region IV in figure 3). Increasing
the temperature beyond Tc(L), a transition from a low-temperature ordered state (region IV)
to a high-temperature disordered state (region VI; see figure 4(e)), both within the concave
growth regime, is observed. Analogously, for small enough fields, a temperature increase
drives the system from the ordered convex growth regime (region I) to the disordered convex
growth regime (region V; see figure 4(d)). As shown in figure 3, there is also an intermediate
fluctuating state (region B) between regions V and VI, characterized by the competition between
the disordered convex growth regime and the disordered concave one.

Finally, a quite unstable and small region (region III) that exhibits the interplay among
the growth regimes of the contiguous regions can also be identified. Since the width of region
III is of the order of the rounding observed in Tc(L), large fluctuations between ordered and
disordered states are observed, as well as from growth regimes of non-defined curvature to
convex ones. However, figure 4(f ) shows a snapshot configuration that is the fingerprint of
region III, that may prevail in the thermodynamic limit—namely a well defined spin up–down
interface with an almost flat growing interface.

Let us now extrapolate our results to show that the rich variety of phenomena found in
a confined geometry are still present in the thermodynamic limit (L → ∞), leading to the
phase diagram shown in the inset of figure 3. As clearly seen by comparison with the finite-
size results, the crossover regions A and B collapse in this limit, so only the six regions that
correspond to well identified growth regimes (as illustrated by the snapshot configurations of
figure 4) appear to remain.

In order to illustrate the extrapolation procedure, the following seven representative points
of the finite-size phase diagram are discussed in detail: (i) the points labelled P1, P ∗

1 , P2, and
P ∗

2 , that correspond to the intersections of the H = 0.6 line with the various transition curves
shown in figure 3, and (ii) the points labelled P3, P ∗

3 , and P4, that refer to the intersection
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and P ∗
2 , all of them with H = 0.6. The fits to the data (solid lines) show that, within error bars,

Pi → P ∗
i (i = 1, 2) for L → ∞.

points between regions I, II, III, and A, the minimum of the limiting curve between regions
IV–VI and A–B, and the zero-field transition point, respectively.

Figure 10 shows plots of T versus L−1 for 12 � L � 48 corresponding to the points P1,
P ∗

1 , P2, and P ∗
2 . Also shown in the figure are the fits to the data extrapolated to L−1 = 0. The

results from the extrapolations are: T1 = 0.67±0.01, T ∗
1 = 0.66±0.01, and T2 = 1.30±0.02,

T ∗
2 = 1.29 ± 0.01, indicating that, within error bars, Pi → P ∗

i (i = 1, 2) in the L → ∞
limit. Using the same procedure, the extrapolations of P3 and P ∗

3 (not shown here) give: H3 =
0.30±0.01, H ∗

3 = 0.31±0.02, and T3 = 0.69±0.01, T ∗
3 = 0.71±0.03. So, one has P3 → P ∗

3
for L → ∞ within error bars. Finally, the extrapolation of P4 is T4 = Tc = 0.69 ± 0.01.

Using the above-mentioned extrapolation procedure, the phase diagram in the
thermodynamic limit can be drawn, as shown in the inset of figure 3. By comparison with the
finite-size phase diagram of figure 3, one can note that, as anticipated, the crossover regions A
and B appear in the phase diagram just as a consequence of the finite-size nature of confined
geometries, since they collapse in the L → ∞ limit. Moreover, we conjecture that region III
may remain in the thermodynamic limit. Although this (very tiny!) region corresponds to a
physically well characterized growth regime, since one expects that the system in this region
may grow in an ordered phase with a delocalized up–down domain interface and a convex
growing interface, statistical errors due to large fluctuations close to criticality hinder a more
accurate location of this region. The unambiguous clarification of our conjecture remains as
an open question that will require a huge computational effort.

Besides an Ising-like continuous wetting transition, coupled morphological transitions in
the growing interface, which arise from the MEMs kinetic growth process, have also been
identified. Comparing the equilibrium wetting phase diagram of the Ising model [15, 23, 24]
and that of the MEM, it follows that the non-equilibrium nature of the latter introduces new
and rich physical features of interest: the non-wet (wet) Ising phase splits out into regions I
and II (regions III and IV), both within the ordered regime (T < Tc) but showing an additional
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transition in the interface growth mode. Also, the disordered state of the Ising system (T > Tc)
splits out into regions V and VI exhibiting a transition in the interface growth mode.

It should be noticed that we have restricted ourselves to temperatures above T = 0.5
throughout, since the lower the temperature in the ordered phase, the greater the computational
effort needed to reliably sample the whole configuration space (indeed, ergodicity is broken in
the T → 0 limit). Right at T = 0.5 the wetting curve of the phase diagram (inset of figure 3)
intercepts the H -axis close to H = 0.9. On physical grounds, no particular features of interest
are expected to arise in the T → 0 limit, and the critical field H = 1 for T = 0 can be inferred
by energetic considerations, as e.g. in the case of the Ising model.

4. Conclusions

The growth of magnetic Eden clusters with ferromagnetic interactions between NN spins
has been studied in a (2 + 1)-dimensional geometry with competing surface magnetic
fields. Extensive Monte Carlo simulations allow us to locate, on the one hand, an Ising-
like localization–delocalization wetting transition, and, on the other hand, a morphological
transition associated with the curvature of the growing interface. In this way, eight different
regions on the H–T phase diagram for a finite-size lattice are identified. Moreover,
the characteristic behaviour of typical growth processes within each region are discussed,
and qualitative explanations that account for the observed features are provided. Finally,
extrapolating the results to the L → ∞ limit the phase diagram is obtained. It is composed
of six different regions, since two crossover regions identified in the finite-size phase diagram
appear to collapse in the thermodynamic limit. The phase diagram obtained shows new and
rich physical features of interest, which arise as a consequence of the non-equilibrium nature
of the model investigated.

We hope that the results presented will, on the one hand, contribute to the understanding
of the rich and complex physical phenomena exhibited by the irreversible growth of binary
mixtures in confined geometries, and, on the other hand, stimulate further experimental and
theoretical work.
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